Equations Yielding the Approximate Speed of a Surfer on a Wave
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March 23, 2003

This paper describes a simple method for predicting the sustained (steady-state) speed of a surfer racing across the face of a wave. Keep in mind, however, that the hydrodynamics of surfing on a wave is very complex not only from a hydrodynamic point of view, but also because significant changes occur over spatial scales comparable to, or smaller than, the dimensions of the wave riding vehicle. So while any attempt to simulating the real world is bound to be imprecise, a simple simulation model may provide some guidance as to the relative importance of the major processes that contribute to the act of surfing.

To minimize the size of the task, steady-state conditions are assumed. An example is the case of a surfer racing across the face of a wave being chased by a breaking long-crested wave in which both the surfer and the break point of the curl of the wave move at the same speed. 

Since the system is in a steady state, the vector sum of the forces acting on the surfer and board are zero and the board remains at the same height on the face of the wave and the same lateral distance from the breaking point of the crest of the wave. Also assumed in this simplified model is that the surfboard is moving sufficiently fast that buoyancy is negligible in comparison with the dynamic force of planing and that the wetted area on the bottom of the board remains constant in both magnitude and shape (so the aspect ratio remains the same). These latter assumptions are representative of the case where the board and rider are supported by fully submerged hydrofoils, but not as accurate for the case of a planing hull since the wetted area typically changes with a change in speed. Nevertheless, the model provides a qualitative description of the hydrodynamics, if not an accurate quantitative prediction.

There are three forces on a surfer and his wave-riding craft. These are:

(1) the force of gravity acting downward on the on the combined mass of the surfer and his craft,

(2) a lift force directed upward and perpendicular to the sea surface, and

(3) a drag force directed opposite to the direction of movement of the board. 

To a first approximation, all of these forces lie in a vertical plane passing through the longitudinal axis of the craft. When a surfer has positioned his craft on the face of the wave, and trimmed the board so that his speed and location on the face of the wave are constant, the vector sum of these forces equals zero:
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where:

W
= combined weight of surfer and his craft
FL
= lift force
FD
= drag force

Vw
= wave velocity towards shore

V
= surfer’s speed along the pathline for the craft
θw
= slope angle of wave face

φP
= pathline or peel angle ( = 0o if  || to wave crest;  90o toward shore)

(P
= slope angle of the sea surface along the surfer’s pathline
Driving Force / Wave Face Slope

The driving force acting on the rider and board is proportional to the mass of the rider and board, the gravitational acceleration, g, and the slope of the wave face along the path of the surfer. For a rider going straight off (peel angle = 90-degrees), the slope along the path of the surfer is the same as the slope of the wave face.  As the surfer’s speed increases (relative to the wave speed) the slope of the wave face along the path of the surfer becomes less than if the surfer were going straight off (and going to zero as the peel angle goes to zero). Hence the driving force is diminished as the speed of the surfer increases. These slope and speed transformations are described by from geometric considerations:  
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Lift Force

The lift force on a hull is a combination of a hydrostatic force (buoyancy) and a hydrodynamic force generated by the downward deflection of water passing under the hull. For a planing hull, as the speed increases, most of the lift force is hydrodynamic in origin. In that case, the force can be approximated by the equation:
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where:

AW
= wetted area of the hull
CL
= lift coefficient (= CL0(sin (())
CL0
= inclination independent lift coefficient (i.e. “lift-slope coefficient”)
(
= inclination angle of the hull (“angle of attack”)
q
= dynamic pressure ( = ½(V2)
(
= density of water

Drag Force

The drag force has two contributions. The first of these is the “induced” drag associated with generation of lift; the second contribution consists of the remaining sources of drag (e.g. skin friction, form, etc.) In general, an increase in the speed of the flow past the board reduces the magnitude of the induced drag but increases the drag from the other sources. Hence there will be some speed at which the total drag is a minimum.

For a “flat” hull, the induced drag, FI, is:
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where:
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The total drag force can then be written:
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Equations (1) through (8) can be solved to obtain the speed of the board in terms of it’s drag coefficient CD0, the lift drag ratio for the hull CL0/CD0, and the slope of the wave face along the path of the board, (P. 

Recalling equation (2):


[image: image9.wmf]P

D

P

L

F

F

q

q

cos

sin

=









(2)

…and substituting in the dependencies for each source of drag (equations 6 – 8), we obtain:
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Solving equation (12) for the angle-of-attack yields:
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Note that if  the ratio of the drag coefficient to the lift coefficient is sufficiently small: 

4((CD0/CL0)  <<  (tan (P) 2  






(15)

…then equation (14) is readily solved with the result that for these small angles, the angle-of-attack converges to:
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However, note that the term in the square-root will become negative if

4((CD0/CL0)  >  (tan (P) 2     
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In this case, there is no  realistic solution (i.e. the solution is an imaginary number).

What this is telling us is that there is some minimum slope required to be able to achieve a steady-state solution—and that the equation for that minimum slope is:

tan (P = 2. sq-root (CD0/CL0)
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Any slope less than this critical value will result in the craft slowing down to a stop and being passed by the wave. 
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